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ABSTRACT

Deep Learning classifiers require a vast amount of data to train
models that generalize well and perform effectively on unseen data.
However, small sizes of training data, especially in the medical
domain, make this a challenging task. Transfer Learning (TL) can
help overcome a scarcity of data by focusing on fine tuning a pre-
trained model with a small amount of specialized training data. In
the last few years, several studies have been performed on TL with
medical images, and they point towards significant gains available
with this method. However, to date no such studies have been
performed in the area of individualized asthma prediction with
limited training data for each patient. In this paper, we conduct a
systematic study of transfer learning in this domain in the context
of neural networks. Our TL approach trains the source model with
population data of 25 asthma patients and then retrains the target
model with a target patient’s data. Our results show that transfer
learning yields promising results in improving model performance
on an individual basis. Further research directions that are worth
investigating based on our results are pointed out as future work
directions.
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1 INTRODUCTION

Asthma is one of the top chronic respiratory diseases affecting about
339 million people, and its prevalence and socioeconomic burden
are rising [9, 10]. Possibly avoidable exacerbations account for 63%
of total asthma cost due to hospital admissions and emergency
room visits, and while asthma is not curable its symptoms can
be controlled through effective management. With improvements
in computing and sensor technologies, a new line of healthcare
research and industry ventures has emerged that offers predictive
health monitoring solutions [3-5, 11, 12, 14, 15]. Such solutions
require automated and early recognition of symptoms or likelihood
of exacerbated symptoms.

A recent review of machine learning approaches to prediction of
chronic diseases focused on fairly small model types but still found
that one of the main challenges to improving forecast quality is the
limited availability of large high quality labeled data sets [1]. One
way to overcome this challenge is with transfer learning which
enables researchers to take advantage of high quality data sets in
related fields to reduce the need for as much domain-specific data
[13]. This strategy has shown great promise in the medical field in
the context of image analysis of MRI or CT scan data and images
from lab tests [6, 8]. However, to our knowledge no similar study
has been performed in the context of asthma risk forecasting with
non-image data. This paper reports results of a preliminary study
of the effectiveness of transfer learning in this domain.

2 STUDY VARIABLES AND RISK METRICS
2.1 Individual-level Asthma Risk

One of the primary health indicators used in the management of
asthma is the peak expository flow rate (PEFR) measurement. In
this paper, we base our risk classifications on a simplified version
of the individual-based asthma risk PEFR zoning method proposed
in [2]. For the purposes of prediction of high risk days in this paper
we use only two zones, a “safe zone” which we nominally take to
be PEFR values in the upper 80% of the patient’s historical PEFR
values and a “red zone” nominally taken to be PEFR values in the
lower 20% of the PEFR distribution. The classification task of the
neural networks studied will be to predict when a patient next-day
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PEFR value is expected to be in the red zone, which is assumed to
be a high-risk condition.

2.2 Study Population and Variables

Study participants were recruited from the adult asthma patients
who had joined the environmental health smart study with con-
nectivity and remote sensing technologies (ESCORT) [16]. A total
of 25 patients (15 women and 10 men) aged 32 to 78 years were
consulted and monitored by doctors and medical practitioners at
Soonchunhyang University Bucheon Hospital, South Korea. We
took a comprehensive approach to tracking spatiotemporal expo-
sure patterns and twice daily PEFR values for each participant
between November 1, 2017 and May 31, 2019. While individual data
set sizes varied, their sizes ranged from 100 to 200 days with a mean
of 154 days.

The study’s explanatory variables included both environmental
as well as personal variables. Environmental variables included:
levels of PMj_ 5, COy and humidity as well as temperature, all mea-
sured at 2 minute intervals by sensors within the home. Personal
variables included: frequency of frying food (7-level scale), distance
from home to nearest major road (5-level scale) and income (9-level
scale).

3 TRANSFER LEARNING

Transfer learning strives to improve a specialized model’s learning
of a new task through the transfer of knowledge from a related task
that has already been learned by a so-called source model [13]. The
resulting specialized model is often referred to as the target model.
For the purpose of our study, we analyze the task of forecasting
whether or not a patient’s next-day PEFR level will be above or
below their critical PEFR value defined in Section 2. We treat this
as a classification problem in which a sample’s input data is the
patient’s current day environmental data and health data and the
sample’s class value is the patient’s next day PEFR zone.

3.1 General Transfer Learning Paradigm

The basic process for applying transfer learning to a classification
neural network involves first training a source model on a task for
which a large dataset is available. This model is then optionally
slightly modified, for example by replacing the last few layers with
layers of a different size or type. The new model is then either fine
tuned in full through further training on the target task or part of
the model’s parameters are frozen and the rest are fine tuned on
the target task as in [8].

3.2 Present Transfer Learning Architecture

For image classification, datasets are often synthetically augmented
by suitably transforming existing images. However, realistic trans-
formations for exposome data have not been rigorously established,
so we must retrain our target model with a very small dataset.
Therefore, we focus only on the effect of freezing the weights of
some initial layers of the source model and fine tuning only the
later layers on the target data. All unfrozen layers for target models
are initialized with the values from the source model.

For the present study, the source task and the target task are the
same: classify a patient’s next-day PEFR value as above or below
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Figure 1: Transfer learning for personalized risk prediction

their critical PEFR value. The source model is trained on data from
the entire population minus the target patient data (24 patients’
data) and the target model is trained on only the target patient’s
data, as illustrated in Figure 1.

All of the networks studied are simple feed-forward neural net-
works with one, two or three hidden layers and an output layer
returning a single value between 0 and 1 interpreted as the models
confidence as to whether or not the patient’s next-day PEFR value
will fall below their critical PEFR. All model layers are fully con-
nected with Rectified Linear Unit (ReLU) activation except for the
output layer, which has sigmoid activation. All models were trained
using Adaptive learning rate optimization (Adam) with binary cross
entropy loss. The input layer of each model consists of 8 parameters
which are yesterday’s PEFR value, 4 indoor quality variables, and 3
personal environmental variables as described in Section 2.2.

Table 1: Neural Network and Transfer Learning design

model architecture unfrozen ratio # unfrozen weights
NN 32 100.0% 321
TL TL1-nf 32 100.0% 321
TL1-1f  32* 10.3% 33
TL2-1f  32*-10 50% 341
32%-20 70.3% 681

32%-32 79.1% 1089

TL3-1f  32*-10-10 61.0% 451
32%-20-20 79.3% 1101

TL3-2f 32*-10*-10 16.4 % 121
32*-10"-20 31.7 % 441

* represents a frozen layer.

The model architectures evaluated together with what layers
were frozen for the target model and other model information are
given in Table 1. In that table, the architecture column gives both
the model architecture as well as the layers that were frozen for the
target model. For example, “32 (frozen) -10 (frozen) - 10” indicates
a source model with three hidden layers of size 32, 10 and 10 and a
target model with the same layers that inherits the parameters of
layers 1 and 2 from the trained source model but for which hidden
layer 3 and the output layer are retrained on the target patient’s
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data. Table 1 also gives the total number of trainable (unfrozen)
parameters in the target model as well as the fraction of the source
model’s parameters made up by parameters that are unfrozen in
the target model.

4 EXPERIMENTAL RESULTS
4.1 Performance Metrics

Models in this paper were evaluated based on their ability to dis-
tinguish “red zone” examples from “safe zone” ones, as defined in
Section 2.1. With our focus on high risk prediction, it is important
to emphasize performance improvement on the target “red zone".
We used four standard evaluation metrics: (1) balanced accuracy, (2)
sensitivity, (3) precision average, and (4) F;-score average, which
are known to be good measures of a models ability to correctly
predict the target class.

We trained the transfer learning models defined in Table 1 with
1000 epochs for the source model and 100 epochs for the target
model. These values were taken from the optimal training durations
found in the authors’ previous work with similar networks. The
source model was trained with 24 patients’ datasets (full population
excluding the target patient’s dataset). The target model was fine
tuned using the target patient’s dataset. The models were developed
in Python 3.7 and Keras framework. The hyperparameters in the
results were selected through extended training and validation
processes.

4.2 Evaluations of Transfer Learning
Architectures

The architectures of the networks evaluated were selected to pro-
vide a range of percentages of unfrozen weights in the target model
while keeping the total number of trainable model parameters
within the constraints dictated by the size of the dataset. For each
architecture, one target model was possible for each of the 25 pa-
tients and each one was evaluated through 3-fold cross validation
giving 75 trained target models for each architecture. The perfor-
mance statistics reported for these models are the averages of each
metric over the 75 target models.
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Figure 2: Performance results of NN and TL

Table 2 shows that all of the performance measures, optimal
performance is achieved when approximately 80% of a model’s
parameters are fine tuned. Figure 2 shows the overall gains achieved
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in the two best transfer learning architectures over a 1-layer neural
network model fully trained on target patients’ data. Although these
increases are more modest than achieved by transfer learning in
other contexts like image classification, they are achieved without
the benefit of data augmentation other than re-sampling to balance
the class sizes. Optimal gain was achieved with relatively little of the
source network frozen, which may indicate that while individuals
differ from each other significantly enough for there to be benefit
in training a new model for each individual, each individual is
consistent enough for a large portion of a network to be reliably
trained on relatively little individual data.

4.3 Population Size versus Relevancy Trade-off

When selecting the source model for transfer learning, one must
often weigh the trade-off between using a high quality source model
whose training data or target task is less related to the target model’s
task and using a lower quality source model whose task is closer to
that of the target model, as studied in [8]. We performed a similar
study by grouping patients into three sub-populations with similar
medical and lifestyle characteristics such as income, cooking style,
and home location. Each group had only 7 to 9 patients, with low
patient-to-patient variation. For each of these sub-populations, we
re-executed the evaluation regime performed on the full population
and compared the average results of these 3 groupings to a baseline
average obtained on 100 repetitions with randomly selected sub-
populations of size 10. Table 3 presents the results of this study.
Opposite of the results in [8], almost all of the architectures
show larger improvement over the base model (TL1-nf) than were
obtained by the corresponding models in Table 2. Perhaps the source
models themselves in the present study are lower quality due to
the relatively small size of even the full population dataset, or the
source task and target task may be more similar in this case.
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Figure 3: Performance results of transfer learning with vary-
ing population for base model

Our final study was to analyze the effect of the size of the source
model’s dataset on the quality of the target model when the rele-
vancy level is unchanged. The average results achieved with each of
these sizes was compared against the results achieved with the full
population (size 25). Figure 3 presents the results of this study. As
expected, in all performance metrics these results show increasing
model quality as the population size increases.
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Table 2: Performance comparisons of TL models (2 quantile zones: <= 20% and > 20%)

model unfrozen ratio balanced acc. sensitivity precision avg. F; score avg.
TL1-nf 100% 0.703 0.608 0.642 0.607
TL1-1f 10% 0.705 0.660 0.644 0.567
TL2-1f 50% 0.701 0.660 0.627 0.574
70% 0.699 0.636 0.638 0.594
80% 0.734 0.665 0.664 0.615
TL3-1f 61% 0.687 0.586 0.644 0.595
80% 0.737 0.665 0.658 0.630
TL3-2f 16% 0.671 0.665 0.608 0.536
30% 0.711 0.657 0.643 0.600

Table 3: Performance comparisons of TL models by grouping patients (2 quantile zones: <= 20% and > 20%)

model  unfrozen ratio group balanced acc. sensitivity precision avg. Fj score avg.
TL1-nf 100% Baseline average (random size 10 groups) 0.523 0.450 0.516 0.471
TL1-nf 100% 3 grouping average 0.563 0.487 0.532 0.498
TL1-1f 10% 3 grouping average 0.531 0.509 0.509 0.445
TL2-1f 50% 3 grouping average 0.549 0.511 0.520 0.468
70% 3 grouping average 0.563 0.504 0.531 0.492
80% 3 grouping average 0.592 0.527 0.530 0.509
TL3-1f 61% 3 grouping average 0.550 0.446 0.529 0.488
80% 3 grouping average 0.586 0.518 0.551 0.533

5 CONCLUSIONS

Our results are consistent with the general trends in machine learn-
ing. First, transfer learning shows promise in partially alleviating
the challenges of small datasets. Second, changes in amount of
the source model used yielded observable trends in performance,
useful for model optimization. These results suggest that future
work investigating more complex transfer learning architectures
may be worthwhile. In particular, output of a middle layer of the
source model could be used to fuel a smaller target model such as a
support vector machine or decision tree. One could also attempt
some of the newer transfer learning methods available for other
possibly less data-hungry models as described in [7].
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